Transfer of Stereochemical Information in a Minimal Self-Replicating System

Victoria C. Allena, Douglas Philpa, and Neil Spencerb

a Centre for Biomolecular Sciences, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, United Kingdom.

b School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.

d.philp@st-andrews.ac.uk

SUPPORTING INFORMATION

Selected spectroscopic data obtained for the characterization of compounds:

N-[3-(*N'*-6-Methyl-2-pyridyl)-amidobenzylidine]-phenylamine *N*-oxide 1: M.p. 170-172°C; Found 332.1397 [M+H⁺], C₂₀H₁₈N₃O₂ requires 332.1399; ν_{max} (KBr)/cm⁻¹ 3184, 3066, 1675, 1600, 1069, 785, 731; δ_{H} (300 MHz, CDCl₃) 8.89 (1H, s, NH), 8.84 (1H, s, CH=N), 8.71 (1H, d, ${}^{3}J_{\text{H,H}}$ 8, Ar CH), 8.17 (1H, d, ${}^{3}J_{\text{H,H}}$ 8, Ar CH), 8.04-7.99 (2H, m, Ar CH), 7.79-7.75 (2H, m, Ar CH), 7.66-7.57 (2H, m, Ar CH), 7.51-7.46 (3H, m, Ar CH), 6.91 (1H, d, ${}^{3}J_{\text{H,H}}$ 7, Ar CH), 2.43 (3H, s, CH₃); δ_{C} (75 MHz, CDCl₃) 164.9 (quat. C), 156.8 (quat. C), 150.5 (quat. C), 148.7 (quat. C), 138.6 (Ar CH), 134.6 (quat. C), 133.3 (Ar CH), 131.8 (Ar CH), 131.0 (quat. C), 130.1 (Ar CH), 129.4 (Ar CH), 129.1 (Ar CH), 127.4 (Ar CH), 121.5 (Ar CH), 119.4 (Ar CH), 110.9 (Ar CH), 23.8 (CH₃); m/z (FAB+) 332 (M+H⁺, 100%), 316 (9).

2-{3_-[N-(6-Methyl-2-pyridyl)-3-benzamidyl]-4,6-dioxo-2-phenyl-(3ar,6ac)-hexahydropyrrolo[3,4-d]isoxazol-5yl}-ethanoic acid, methyl ester 3 and 4 (7:2 ratio of diastereoisomers): M.p. >125°C (decomp); Found: C, 64.9; H, 4.9; N, 11.1. Calc. for $C_{27}H_{24}N_4O_6$: C, 64.9; H, 4.8; N, 11.2%; Found 501.1768 $[M+H^+]$, $C_{27}H_{25}N_4O_6$ requires 501.1774; $v_{\text{max}}(\text{KBr})/\text{cm}^{-1}$ 3434, 1752, 1721, 1685, 1327, 1272, 792, 746, 696; δ_{H} (300 MHz, CDCl₃) 9.05 (0.7H, s, NH), 8.91 (0.3H. br s, NH), 8.22 (0.3H, d, ${}^{3}J_{\text{H.H}}$ 8, Ar CH), 8.15 (0.7H, d, ${}^{3}J_{\text{H.H}}$ 8, Ar CH), 8.05 (0.3H, s, Ar CH), 7.98 (0.7H, s, Ar CH), 7.93 (0.7H, d, ${}^{3}J_{H,H}$ 8, Ar CH), 7.87 (0.3H, d, ${}^{3}J_{H,H}$ 8, Ar CH), 7.72-7.57 (2H, m, Ar CH), 7.50-7.45 (1H, m, Ar CH), 7.22-7.17 (2H, m, Ar CH), 7.09-7.05 (2H, m, Ar CH), 7.01-6.98 (0.7H, m, Ar CH), 6.95-6.90 (1.3H, m, Ar CH), 5.52 (0.3H, s, CH), 5.21-5.16 (1H, m, CH), 4.78 (0.7H, d, ${}^{3}J_{H,H}$ 9, CH), 4.30-4.20 (1.7H, m, CH and CH₂), 4.05 (0.7H, dd, ${}^{3}J_{H,H}$ 8, ³J_{H.H} 9, CH), 3.95 (0.6H, s, CH₂), 3.75 (2.1H, s, OCH₃), 3.70 (0.9H, s, OCH₃), 2.50 (0.9H, s, CH₃), 2.45 (2.1H, s, CH₃); $\delta_{\rm C}$ (125 MHz, CDCl₃, 31°C) 173.8 (quat. C), 173.7 (quat. C), 172.5 (quat. C), 171.7 (quat. C), 166.8 (quat. C), 166.4 (quat. C), 165.4 (quat. C), 165.1 (quat. C), 156.6 (quat. C), 156.5 (quat. C), 150.9 (quat. C), 150.5 (quat. C), 147.4 (quat. C), 146.3 (quat. C), 139.3 (Ar CH), 138.8 (Ar CH), 135.1 (quat. C), 134.9 (quat. C), 134.5 (quat. C), 131.6 (Ar CH), 130.8 (Ar CH), 129.4 (Ar CH), 129.3 (Ar CH), 128.9 (Ar CH), 128.7 (Ar CH), 128.3 (Ar CH), 127.1 (Ar CH), 126.6 (Ar CH), 126.0 (Ar CH), 125.7 (Ar CH), 123.3 (Ar CH), 120.6 (Ar CH), 119.6 (Ar CH), 119.4 (Ar CH), 115.3 (Ar CH), 111.4 (Ar CH), 111.3 (Ar CH), 76.7 (CH), 76.3 (CH), 71.2 (CH), 69.6 (CH), 57.1 (CH), 54.7 (CH), 53.1 (CH₃), 52.8 (CH₃), 39.6 (CH₂), 39.5 (CH₂), 23.8 (CH₃), 23.7 (CH₃); m/z (LCTOF) 523 (M+Na⁺, 97%), 501 (M+H⁺, 8), 354 (100), 332 (25).

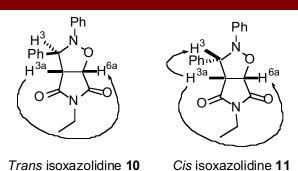
2-{3c-[*N*-(6-Methyl-2-pyridyl)-3-benzamidyl]-4,6-dioxo-2-phenyl-(3ar,6ac)-hexahydropyrrolo[3,4-d]isoxazol-5-yl}-ethanoic acid 6: M.p. >165°C (decomp); Found: C, 64.2; H, 4.6; N, 11.75. Calc. for $C_{26}H_{22}N_4O_6$: C, 64.2; H, 4.6; N, 11.5%; Found 487.1625 [M+H+], $C_{26}H_{23}N_4O_6$ requires 487.1617; $v_{max}(KBr)/cm^{-1}$ 3396, 1791, 1720, 1328, 1274, 794, 753, 733, 695; δ_H (300 MHz, CDCl₃) 11.57 (1H, br s, CO₂H), 10.93 (1H, s, NH), 8.13 (1H, d, ${}^3J_{H,H}$ 8, Ar CH), 7.98 (1H, s, Ar CH), 7.88 (1H, d, ${}^3J_{H,H}$ 8, Ar CH), 7.82-7.76 (1H, m, Ar CH), 7.49-7.46 (1H, m, Ar CH), 7.41-7.35 (1H, m, Ar CH), 7.17-7.11 (2H, m, Ar CH), 6.99 (1H, d, ${}^3J_{H,H}$ 7, Ar CH), 6.93 (2H, d, ${}^3J_{H,H}$ 8, Ar CH), 6.89-6.84 (1H, m, Ar CH), 5.37 (1H, s, CH), 5.14 (1H, d, ${}^3J_{H,H}$ 7, CH), 4.05 (1H, d, ${}^2J_{H,H}$ 12, CH₂), 3.88 (1H, d, ${}^3J_{H,H}$ 7, CH), 3.83 (1H, d, ${}^2J_{H,H}$ 12, CH₂), 2.49 (3H, s, CH₃); δ_C (100 MHz, CDCl₃, 31°C) 174.9 (quat. C), 173.1 (quat. C), 171.3 (quat. C), 166.6 (quat. C), 154.8 (quat. C), 150.7 (quat. C), 147.4 (quat. C), 141.5 (Ar CH), 138.2 (quat. C), 134.4 (quat. C), 131.1 (Ar CH), 129.2 (Ar CH), 128.9 (Ar CH), 128.7 (Ar CH), 126.2 (Ar CH), 122.9 (Ar CH), 120.0 (Ar CH), 115.3 (Ar CH), 113.5 (Ar CH), 76.7 (CH), 69.4 (CH), 57.0 (CH), 40.8 (CH₂), 21.0 (CH₃); m/z (FAB) 487 (M+H+, 81%), 457 (15), 366 (39), 332 (100).

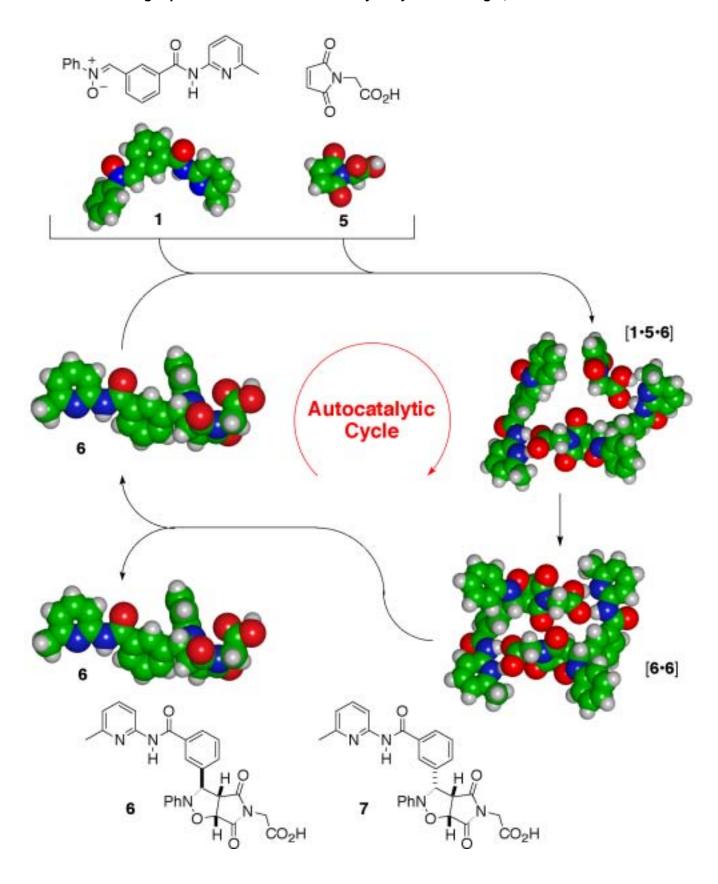
Assignment of stereochemistry for compounds 3,4,6 and 7.

In order to assign the stereochemistry of compound 3,4,6 and 7, a detailed investigation into the reaction between diphenyl nitrone 8 and N-ethyl maleimide 9 was undertaken (**Scheme 1**). ¹H NMR spectroscopic data obtained from the two isolated diastereoisomers 10 and 11 was then compared to spectroscopic data obtained by both Al-timari $et\ al^1$ and Iwakura $et\ al^2$.

Scheme 1.

Further structure elucidation of compounds 10 and 11 was undertaken by employing nOe techniques, the results of which are shown in **Figure 1**. Upon irradiation of the H^{3a} resonance signal a significant nOe interaction was observed to the H^{6a} resonance signal in the case of the *trans* isoxazolidine 10. No significant nOe was observed to H^{3} as this proton is located on the opposite face of the heterocycle. Conversely, in the case of the *cis* isoxazolidine 11 strong nOes were observed to protons H^{3} and H^{6a} upon irradiation of the H^{3a} resonance signal. In the case of 11, these protons are located on the same face of the heterocyclic ring.




Figure 1. Positive nOes observed for the *trans* and *cis* isoxazolidines 10 and 11 arising from the reaction between diphenyl nitrone 8 and N-ethyl maleimide 9.

The ¹H NMR spectra obtained for compounds **3** and **6**, and **4** and **7** were comparable to those obtained for cycloadducts **10** and **11** respectively when the resonance peaks due to protons attached directly to the bi-cycle were considered (H³, H^{3a} and H^{6a}, **Figure 1**). It was therefore assumed for the purposes of our investigation that the disatereoisomers displaying a similar pattern of resonance peaks to compounds **10** and **11** were the *trans* and *cis* diastereoisomers respectively.

¹ Al-timari, U. A. R.; Fisera, L.; Ertl, P.; Goljer, I.; Pronoyova, N. Monatsch. Chem. 1992, 123, 999.

² Iwakura, Y.; Uno, K.; Hong, S.-J.; Hongu, T. Bull. Chem. Soc. Jpn. 1972, 45, 192.

Molecular modeling representations of the autocatalytic cycle involving 1, 5 and 6

Assessment of the Association Constants for Complexes involved in the Autocatalytic Cycle

The association constant for the [1•5] complex cannot be measured directly since the reaction between 1 and 5 to afford 6 and 7 will occur within the time scale of the titration experiment. The use of the succinimide arising from hydrogenation of the double bond in 5 is also not possible as this compound is completely insoluble in the reaction solvent CDCl₃. We therefore adopted a strategy in which the nitrone in 1 was replaced by a group with a similar Hammett σ parameter – in this case, we chose the fluorine substituent (compounds 12 and 13, Table 1). Associations involving the nitrone 1 were modeled using the complex formed between 1 and acetic acid, which has a similar pK_a to 5. All association constants were measured by 400 MHz ¹H NMR titration experiments in CDCl₃ at 10°C and the values obtained for the association constants are given in the table below.

We have assessed the strength of the single point binding between a carboxylic acid and the amidopyridine nitrogen in other work performed in our laboratories. The association constant for the [5•14] complex was determined by a 400 MHz ¹H NMR titration experiments in CDCl₃ together with the appropriate two point association constant for the [5•15] complex for comparison (see Table).

Compound A	Compound B	K_a/M^{-1}
	СН₃СООН	130 ± 6
12 F	5 N—CO ₂ H	70 ± 3
13 P	5 CO ₂ H	57 ± 3
O CH ₃ OMe	5 CO₂H	15 ± 1
N N H OME	5 CO ₂ H	115 ± 6